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‘Summary. Let X be a topological space, K a compact subset of a locally convex ‘-si)aCe Y and ¢(X)
the family of closed convex subsets of K. It is shown that a map & : X—-c(K ) is lower semiconti-
muous if the set {x: @ (x) " H#@} is open for any H={x: f(x)>r} where fis a continuous
functional on-Y. A simple example in R? shows that the. compactness assumption on K is essential

- 1. Introduction. Let X, Y be topologlcal spaces. We use 2¥ to denote the family
of closed subsets of Y. A set-valued map @ : X—27 is called lower semicontinuous
if for any open set U in Y, the set {xeX D (x) N U#Q} is open in X. It is well
known that the lower semicontinuous set-valued maps play a significant role in
the continuous selection theories (cf. [3 4]). If Y is a locally convex. (Hausdorff)
linear topological space and X is a closed subset of ¥, we let ¢ (K) denote the famlly
of closed convex subsets of K. A set-valued map @ : X—27 is called weakly lower
semicontinuous if the set {xe X : ® (x) " H+#©O} is open foi any open half space
-H={ye Y:f(y)>r}, where fe Y*, r € R. Our. main purpose is .to prove .

" THEOREM 1. Suppose X is a topological space, Y a locally convex space and K
«a compact subset of Y. Let & : X—c (K) be a set-valued map. Then & is lower semi-
continuous if and only if it is weakly lower semicontinuous. v

Although the given topology and the w (Y, Y*) topology coincide in K, it is not
immediate  that the. sets {xeX:® (x)NH;#3}, i=1, ..., n are open, . w111 Aimply

‘that- {xeX [} (x)ﬂ ﬂ H,;é@} is open Hence one side of the theorem is non-
~trivial. .

2. Proof of the theorem. Theoréem 1 will result from the following lemmas.
In the proofs, we will make use of the Vietoris topology [1]. Let X" be a topological
space. A subbase for the Vzetorzs topology on 2X consists of all sets havmg one of
: the folIowmg forms

{Fe2X:FNU#@), {Fe2¥: Fe U},,

. where U.is an arbitrary open set in X.
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LEMMA 2. Let X be a topological space and let 2% be given the Vletorzs topology,
then

(i) if X is compact, so is 2%.

(ii) if X is regular, let {F,},c1 be a net in 2X converging to F,, then Jor each xe X,
we have an equivalence: x € F, if and only if there exists a net {x, Yacts X, €F,Vael,
converging to x in X.

Proof. (i) follows from Theorem 15 in [1]. Suppose the necessity paft of @iy

were not true, there exist a subnet {F};c; of {F,},cr and an open neighborhood _
U of x such that Fy N U= for each B. Note that {F,},., converges to F,. The family

F={Fe2*: FnU=0}

is a closed subset in 2¥ and F; € ¢ for all feJ. But F, ¢ ¢ (for x.€ Fo N U), a contra- - »
diction. The sufficiency follows immediately from the definition of the Vletorls
topology and the regularity of the space X. '

LEMMA 3. Let X be a subset of a locally comvex space and let ¢ (X) be the family
of closed convex subsets of X, then ¢ (X) is closed in 2%, :

Proof. Let {F }ae r be a net in ¢(X) converging to F,. We only need to show - |

that F, is convex. Consider Ax+(1—21)y, x,ye F,, 0<i<l. By Lemma 2 (ii),
there exist two nets {X,}uer, {Vutaer> X Y« € Fy, Vo€ 1, converging to x, y, respecti-
vely. Since F, is convex, Ax,+(1— 1) y, is in F, for each « € I. That {Axe+(1=2) Yuaer
converging to Ax+(1—4) y and Lemma 2 (ii) imply that Ax+ (1 — ) yisin F,. Hence’

F, is convex.
Our key step is to prove the following proposition.

PROPOSITION 4. Let Y be a locally convex space, K a compact subset of Y, yo € K.
and U an open neighborhood of y, in Y. Then there are open half spaces Hy, ..., H,
in Y containing y, such that every closed convex subset S<K which intersects
H,, ..., H, must intersect U,

" Proof. Let D=K\U. Then D is compact, and so is 2° with the Vietoris topo-
logy. By Lemma 3, ¢'(D) is closed and hence compact in 2°. Let # be the collection
of open half spaces in ¥ containing y,. Since ¥ is locally convex, by the separation
theorem, each F in ¢ (D) is a subset of Y\ A for some He ,%” Hence the sets .

Uy={Fe2’: FEY\H},  HeH

form an open cover of ¢ (D) There exists a finite subcover %H y o %H These H Ly ees

o H, satlsfy the requirement. Indeed, if S is'a closed convex subset in K such that |
Sr\ U=0, then SSD and S € %y, for some i=1, ..., n. This implies that SnHi
=@ for some i=1,. vy H. -

- Proof of Theorem 1. The necessity is clear. To prove the suﬁiciency,‘ it
is enough to prove that for any open set U in Y such that & (x0) N U#4, the set
{xeX D (x)"U#D} is a neighborhood of x,. Let y, e @ (xo)n U and let
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: Hy, ..., H, be the open half spaces constructed in the above proposition. Since
each @ (x) is closed and. convex, it follows that

(nj {xeX: @(x)ﬂH;;éQ}_C_{xeX: d (x)NU#£D}.

By assumption each set on the left side is an open neighborhoéd of x,, hence so
is {xeX: ® (x)NU#D}.

3. Remarks. Combining Theorem 1 and the Michael selection theorem, we have

COROLLARY 5. Suppose X is a compact Hausdorff space, Y a metrizable locally
convex space and K a compaot subset of Y. Let @ : X—c (K) be a weakly lower
semicontinuous map and let f be a continuous function defined on a closed subset F
in X with values in Y and such that f(x) € ® (x) for each x € F. Then f can be ex-
tended to a continuous function f on X such that f(x)e @ (x) for each x € X.

An application of this corollary is shown in [2]. We finally remark that Theorem
1 will not be true if we do not assume that each of the @ (x) is contained in a
compact subset of Y. Consider the map & from X=[0, 1] into ¢ (R?) with @ (0)=
={(1,,): v, € R} and @ (x)={(y1, ¥2): X+ Y2=Y1; Y1, Y2 € R} for x#0. Then &
is not lower semicontinuous. But for any open half space H in R?, the set {xe X=
& (x) N H#0} is either [0, 1] or [0, I]\{x'} for some x’ in X, hence & is weakly
lower semicontinuous. If Y=R, the two conditions will be equivalent even without
the compactness condltlon For in this case we have

{xeX:®(x)N(a, b)#D}= {xeX q§(x)n(——oo b0} N
N {x: @ (x) N (a, o) # D}
for any a, b in R with a<b.
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Ka-Cunr Jlay, 3aMeTKa 0 NOJyHENpPEpLIBHLIX CHH3Y MHOTOBRJIEHTHBIX HpeoOpa3oBaHUAX
1 .

Conepxanne, ITyctb X GyAeT TOMOIOTHYECKAM IpocTpaHcTBoM, K — KOMIOAKTHBIM MHOXECTBOM
JIOKaJILHO BBINyKyoro npocrpaucrsa Y, ¢ (K) — ceMedCTBOM 3aMKHYTBIX BBIIYKJIBIX TOAMHOXECTH:
Joxaxem, uro npeobGpasopanume P :X—c (K) ecTh TOIyHENpPEpBIBHOE CHU3Y €CIIM MHOXECTBO
{x: ®(x) " H# @ } otkpsiToe mst moboro H={x: f (x)>r}x rne f sensercs HenpepBHBIM QYHKIHO~
manoMm Ha Y. Ilpocroii npmmep B R? HOKa3bIBAET, YTO MPEAIIOIOKCHUEC KOMIAKTHOCTA K cyme~
CTBEHHO.







