BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES Série des sciences math., astr. et phys. — Vol. XXIV, No. 4, 1976

> MATHEMATICS (GENERAL TOPOLOGY)

A Note on Lower Semicontinuous Set-valued Maps*)

bv

KA-SING LAU

Presented by K. KURATOWSKI on April 10, 1975

Summary. Let X be a topological space, K a compact subset of a locally convex space Y and c(K) the family of closed convex subsets of K. It is shown that a map $\Phi: X \to c(K)$ is lower semicontinuous if the set $\{x: \Phi(x) \cap H \neq \emptyset\}$ is open for any $H = \{x: f(x) > r\}$ where f is a continuous functional on Y. A simple example in R^2 shows that the compactness assumption on K is essential

1. Introduction. Let X, Y be topological spaces. We use 2^Y to denote the family of closed subsets of Y. A set-valued map $\Phi: X \to 2^Y$ is called lower semicontinuous if for any open set U in Y, the set $\{x \in X : \Phi(x) \cap U \neq \emptyset\}$ is open in X. It is well known that the lower semicontinuous set-valued maps play a significant role in the continuous selection theories (cf. [3, 4]). If Y is a locally convex (Hausdorff) linear topological space and K is a closed subset of Y, we let c(K) denote the family of closed convex subsets of K. A set-valued map $\Phi: X \to 2^Y$ is called weakly lower semicontinuous if the set $\{x \in X : \Phi(x) \cap H \neq \emptyset\}$ is open for any open half space $H = \{y \in Y : f(y) > r\}$, where $f \in Y^*$, $r \in R$. Our main purpose is to prove

THEOREM 1. Suppose X is a topological space, Y a locally convex space and K a compact subset of Y. Let $\Phi: X \rightarrow c(K)$ be a set-valued map. Then Φ is lower semicontinuous if and only if it is weakly lower semicontinuous.

Although the given topology and the $w(Y, Y^*)$ topology coincide in K, it is not immediate that the sets $\{x \in X : \Phi(x) \cap H_i \neq \emptyset\}$, i=1, ..., n are open, will imply that $\{x \in X : \Phi(x) \cap \bigcap_{i=1}^{n} H_i \neq \emptyset\}$ is open. Hence one side of the theorem is non-trivial.

2. Proof of the theorem. Theorem 1 will result from the following lemmas. In the proofs, we will make use of the Vietoris topology [1]. Let X be a topological space. A subbase for the *Vietoris topology* on 2^{x} consists of all sets having one of the following forms:

$${F \in 2^X : F \cap U \neq \emptyset}, \quad {F \in 2^X : F \subseteq U},$$

where U is an arbitrary open set in X.

^{*)} Revised version received on August 5, 1975.

LEMMA 2. Let X be a topological space and let 2^{x} be given the Vietoris topology, then

- (i) if X is compact, so is 2^{X} .
- (ii) if X is regular, let $\{F_{\alpha}\}_{\alpha\in I}$ be a net in 2^X converging to F_0 , then for each $x\in X$, we have an equivalence: $x\in F_0$ if and only if there exists a net $\{x_{\alpha}\}_{\alpha\in I}$, $x_{\alpha}\in F_{\alpha}$ \forall $\alpha\in I$, converging to x in X.

Proof. (i) follows from Theorem 15 in [1]. Suppose the necessity part of (ii) were not true, there exist a subnet $\{F_{\beta}\}_{\beta \in J}$ of $\{F_{\alpha}\}_{\alpha \in I}$ and an open neighborhood U of x such that $F_{\beta} \cap U = \emptyset$ for each β . Note that $\{F_{\beta}\}_{\beta \in J}$ converges to F_{0} . The family

$$\mathscr{J} = \{ F \in 2^X \colon F \cap U = \emptyset \}$$

is a closed subset in 2^X and $F_{\beta} \in \mathcal{J}$ for all $\beta \in J$. But $F_0 \notin \mathcal{J}$ (for $x \in F_0 \cap U$), a contradiction. The sufficiency follows immediately from the definition of the Vietoris topology and the regularity of the space X.

LEMMA 3. Let X be a subset of a locally convex space and let c(X) be the family of closed convex subsets of X, then c(X) is closed in 2^{X} .

Proof. Let $\{F_{\alpha}\}_{\alpha\in I}$ be a net in c(X) converging to F_0 . We only need to show that F_0 is convex. Consider $\lambda x + (1-\lambda)y$, $x, y \in F_0$, $0 < \lambda < 1$. By Lemma 2 (ii), there exist two nets $\{x_{\alpha}\}_{\alpha\in I}$, $\{y_{\alpha}\}_{\alpha\in I}$, x_{α} , $y_{\alpha}\in F_{\alpha}$ $\forall \alpha\in I$, converging to x, y, respectively. Since F_{α} is convex, $\lambda x_{\alpha} + (1-\lambda)y_{\alpha}$ is in F_{α} for each $\alpha\in I$. That $\{\lambda x_{\alpha} + (1-\lambda)y_{\alpha}\}_{\alpha\in I}$ converging to $\lambda x + (1-\lambda)y$ and Lemma 2 (ii) imply that $\lambda x + (1-\lambda)y$ is in F_0 . Hence F_0 is convex.

Our key step is to prove the following proposition.

PROPOSITION 4. Let Y be a locally convex space, K a compact subset of Y, $y_0 \in K$ and U an open neighborhood of y_0 in Y. Then there are open half spaces $H_1, ..., H_n$ in Y containing y_0 such that every closed convex subset $S \subseteq K$ which intersects $H_1, ..., H_n$ must intersect U.

Proof. Let $D=K\setminus U$. Then D is compact, and so is 2^D with the Vietoris topology. By Lemma 3, c(D) is closed and hence compact in 2^D . Let \mathscr{H} be the collection of open half spaces in Y containing y_0 . Since Y is locally convex, by the separation theorem, each F in c(D) is a subset of $Y\setminus \overline{H}$ for some $H\in \mathscr{H}$. Hence the sets

$$\mathcal{U}_H = \{ F \in 2^D \colon F \subseteq Y \setminus \overline{H} \}, \quad H \in \mathcal{H}$$

form an open cover of c(D). There exists a finite subcover $\mathcal{U}_{H_1}, ..., \mathcal{U}_{H_n}$. These $H_1, ..., H_n$ satisfy the requirement. Indeed, if S is a closed convex subset in K such that $S \cap U = \emptyset$, then $S \subseteq D$ and $S \in \mathcal{U}_{H_i}$ for some i = 1, ..., n. This implies that $S \cap H_i = \emptyset$ for some i = 1, ..., n.

Proof of Theorem 1. The necessity is clear. To prove the sufficiency, it is enough to prove that for any open set U in Y such that $\Phi(x_0) \cap U \neq \emptyset$, the set $\{x \in X : \Phi(x) \cap U \neq \emptyset\}$ is a neighborhood of x_0 . Let $y_0 \in \Phi(x_0) \cap U$ and let

 $H_1, ..., H_n$ be the open half spaces constructed in the above proposition. Since each $\Phi(x)$ is closed and convex, it follows that

$$\bigcap_{i=1}^{n} \left\{ x \in X : \Phi(x) \cap H_i \neq \emptyset \right\} \subseteq \left\{ x \in X : \Phi(x) \cap U \neq \emptyset \right\}.$$

By assumption each set on the left side is an open neighborhood of x_0 , hence so is $\{x \in X : \Phi(x) \cap U \neq \emptyset\}$.

3. Remarks. Combining Theorem 1 and the Michael selection theorem, we have

COROLLARY 5. Suppose X is a compact Hausdorff space, Y a metrizable locally convex space and K a compact subset of Y. Let $\Phi: X \to c(K)$ be a weakly lower semicontinuous map and let f be a continuous function defined on a closed subset F in X with values in Y and such that $f(x) \in \Phi(x)$ for each $x \in F$. Then f can be extended to a continuous function f on X such that $f(x) \in \Phi(x)$ for each $x \in X$.

An application of this corollary is shown in [2]. We finally remark that Theorem 1 will not be true if we do not assume that each of the $\Phi(x)$ is contained in a compact subset of Y. Consider the map Φ from X=[0,1] into $c(R^2)$ with $\Phi(0)=\{(1,y_2):y_2\in R\}$ and $\Phi(x)=\{(y_1,y_2):x\cdot y_2=y_1,y_1,y_2\in R\}$ for $x\neq 0$. Then Φ is not lower semicontinuous. But for any open half space H in R^2 , the set $\{x\in X:\Phi(x)\cap H\neq 0\}$ is either [0,1] or $[0,1]\setminus \{x'\}$ for some x' in X, hence Φ is weakly lower semicontinuous. If Y=R, the two conditions will be equivalent even without the compactness condition. For in this case we have

$$\{x \in X : \Phi(x) \cap (a, b) \neq \emptyset\} = \{x \in X : \Phi(x) \cap (-\infty, b) \neq \emptyset\} \cap \{x : \Phi(x) \cap (a, \infty) \neq \emptyset\}$$

for any a, b in R with a < b.

UNIVERSITY OF PITTSBURGH, PITTSBURGH, Pa. 15260 (U.S.A.)

REFERENCES

- [1] O. Frink, Jr., Topology in lattices, Trans. Amer. Math. Soc., 51 (1942), 569-582.
- [2] K. Lau, Extreme operators on Choquet simplexes, Pacific J. Math., 52 (1974), 129-142.
- [3] E. Michael, Continuous selections I, Annals of Math., 63 (1956), 361-382.
- [4] T. Parthasarathy, Selection theorems and their applications, Springer Verlag, Lecture Notes in Mathematics, No. 263 (1972).

Ка-Синг Лау, Заметка о полунепрерывных снизу многовалентных преобразованиях

Содержание, Пусть X будет топологическим пространством, K — компактным множеством локально выпуклого пространства Y, с (K) — семейством замкнутых выпуклых подмножеств. Докажем, что преобразование $\Phi: X \rightarrow c(K)$ есть полунепрерывное снизу если множество $\{x: \Phi(x) \cap H \neq \varnothing\}$ открытое для любого $H = \{x: f(x) > r\}$ ж где f является непрервным функционалом на Y. Простой пример в R^2 показывает, что предположение компактности K существенно.